Proof of $n - \lceil \dfrac{n}{2} \rceil = \lfloor \dfrac{n}{2} \rfloor$ (Latex test - MathJax)
The key here is to divide the cases, it is not really difficult at all
To proof : $n - \lceil \dfrac{n}{2} \rceil = \lfloor \dfrac{n}{2} \rfloor$
Case 1. $ n = 2k + 1$
$$n - \lceil \dfrac{n}{2} \rceil = 2k + 1 - ( k+1) = \lfloor k + \dfrac{1}{2} \rfloor = k$$
Both the LHS and RHS are $k$ therefore, the equality stands true.
Case 2. $ n = 2k$
$$n - \lceil \dfrac{n}{2} \rceil = 2k - (k) = \lfloor \dfrac{2k}{2} \rfloor = k $$
Both the LHS and RHS are $k$ therefore, the equality stands true.
Thus, we have shown $n - \lceil \dfrac{n}{2} \rceil = \lfloor \dfrac{n}{2} \rfloor$
To proof : $n - \lceil \dfrac{n}{2} \rceil = \lfloor \dfrac{n}{2} \rfloor$
Case 1. $ n = 2k + 1$
$$n - \lceil \dfrac{n}{2} \rceil = 2k + 1 - ( k+1) = \lfloor k + \dfrac{1}{2} \rfloor = k$$
Both the LHS and RHS are $k$ therefore, the equality stands true.
Case 2. $ n = 2k$
$$n - \lceil \dfrac{n}{2} \rceil = 2k - (k) = \lfloor \dfrac{2k}{2} \rfloor = k $$
Both the LHS and RHS are $k$ therefore, the equality stands true.
Thus, we have shown $n - \lceil \dfrac{n}{2} \rceil = \lfloor \dfrac{n}{2} \rfloor$
Comments
Post a Comment